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Abstract

It is now well known that Fick’s Law is frequently inadequate for describing moisture diffusion in polymers and
polymer composites. Non-Fickian or anomalous diffusion is likely to occur when a polymer composite laminate is
subjected to external stresses that could give rise to internal damage in the form of matrix cracks. As a result, it is
necessary to take into account the combined effects of temperature, stress, and damage in the construction of such a
model. In this article, a modeling methodology based on irreversible thermodynamics applied within the framework of
composite macro-mechanics is presented, that would allow characterization of non-Fickian diffusion coefficients from
moisture-weight-gain data for laminated composites. A symmetric damage tensor based on continuum damage me-
chanics is incorporated in this model by invoking the principle of invariance with respect to coordinate transformations.
For tractability, the diffusion-governing equations are simplified for the special case of a laminate, with uniformly
distributed matrix cracks, that is subjected to a uniaxial tensile stress. The final form for effective diffusivity obtained
from this derivation indicates that the effective diffusivity for this case is a quadratic function of crack density. A finite
element procedure that extends this methodology to more complex shapes and boundary conditions is also presented.
Comparisons with test data for a 5-harness satin textile composite are provided for model verifications. © 2000 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

The benefits of a light-weight polymer matrix composite (PMC) components to aircraft engines are now
well known. Although thousands of PMC components are currently in service, barriers still exist to further
implementation in more structurally critical and higher temperature applications. Most of these barriers are
associated with the inability to accurately predict component lives, and therefore, component life-cycle
costs. A fiber reinforced composite material with a polymer matrix will typically absorb moisture in a
humid environment and at elevated temperatures. A combined exposure to heat and moisture affects a
PMC in a variety of ways. First, the hygrothermal swelling causes a change in the residual stresses within
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the composite that could lead to micro-crack formation. These micro-cracks, in turn, provide fast diffusion
paths and thus alter the moisture absorption characteristics of the laminate. Secondly, heat and humidity
may cause the matrix to become plasticized thus causing an increase in the elongation to failure of the matrix.
Thirdly, the chemical bond at the interface between fiber and matrix may be affected which in turn, would
influence strength and toughness. Finally, in the event of cyclic heating and cooling with a sustained use-
temperature above the boiling point of water, vaporization and out-gassing of absorbed moisture may take
place leading to physical damage and chemical changes within the PMC, especially at temperatures greater
than the 7, of the matrix. A continuous exposure to high moisture concentrations at the exposed surfaces of
a PMC component could also lead to damage in the form of matrix cracking, dissolution, and peeling.

It is now widely recognized that cyclic moisture absorption and desorption plays a significant role in
influencing the mechanical behavior, and therefore, long-term durability of polymers and PMC. Numerous
diffusion models have been proposed over the years for modeling hygrothermal effects in PMC. The one,
most frequently used by researchers is the one-dimensional Fickian model. Unfortunately, this model tends
to overestimate the moisture absorption in panels for a short diffusion time (Shen and Springer, 1981).
Some researchers have suggested that the deviation can be explained by a two-stage Fickian process (Gurtin
and Yatomi, 1979; Carter and Kibler, 1978). Others claim that the diffusion process in a PMC is really non-
Fickian (Shirrell et al., 1979; Weitsman, 1991). In reality, the nature of the diffusion process depends on the
material and on the environmental conditions that the material is exposed to. For example, if the rate of
viscoelastic relaxation in a polymer is comparable to the rate of moisture diffusion, then the diffusion is
likely to be non-Fickian. In addition, the presence of strong temperature and stress gradients has been
known to engender non-Fickian driving forces. The presence of damage in the form of matrix cracks could
also lead to anomalous diffusion. Employing a rigorous thermodynamic approach, Weitsman (1987) de-
veloped a model for coupled damage and moisture transport in a transversely isotropic, fiber reinforced
polymer composite. The damage entity was represented as a skew-symmetric tensor and was included in the
model as an internal state variable. However, the model was mathematically complex and was not ame-
nable to a simple closed-form solution.

In this article, theory of irreversible thermodynamics is applied within the framework of continuum
mechanics to derive governing equations for diffusion in a PMC from first principles. A special form for
Gibbs potential is formulated for an orthotropic material using stress, temperature, damage and moisture
concentration as independent state variables. The resulting governing equations are capable of modeling
the effect of interactions between complex stress, temperature, damage and moisture concentration on the
diffusion process within an orthotropic material. The primary focus of this work is to model diffusion in the
presence of a pre-existing state of damage; consequently damage evolution is not included in the present
analysis for tractability. Because the mathematically complex nature of the governing equations precludes a
closed-form solution, a variational formulation is used to derive the weak form of the non-linear governing
equations that are then solved using the finite element method. This approach provides a significant im-
provement over solution methods reported in the literature for this type of problems. For model validation,
the model predictions are compared with experimental data for the special case of isothermal diffusion in an
unstressed 5-harness satin weave graphite/epoxy [0/90/0/90]; laminate with distributed matrix micro-cracks.

2. Model development

The Gibbs potential for an orthotropic material subjected to applied stress and internal damage must be
expressed in a polynomial form that remains invariant to coordinate transformations. Such a polynomial
can be mathematically expressed as a combination of invariant terms obtained from the so-called irre-
ducible integrity bases (Adkins, 1959; Talreja, 1994). The irreducible integrity bases for an orthotropic
material are,
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where the normalized stress
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where ¢, is the ultimate stress in a material principal direction, the damage tensor dj; is a symmetric tensor
of the second rank.
The chemical potential of moisture in the polymer is given by

o
:u_psaimﬂ (2)

where, ¢ is Gibbs potential, p, is the mass density of the polymeric solid, and “m” is the moisture con-
centration. It should be noted that in this treatment the moisture concentration “m’ is assumed to be a
scalar valued variable with the same value in all symmetry directions. Conservation of diffusing mass within
a unit volume of the polymer requires

om of;
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where, in the absence of temperature, stress and damage gradients, moisture flux f; for orthotropic sym-
metry is assumed to be of the form,

Ou
i=—Di—, 4
fi=Digx (4)
where D; are the diffusion coefficients in the lamina material principal directions. It should be noted that
repeated indices do not imply summation in Eq. (4). Combining Eqgs. (2)-(4), gives the governing equation
for diffusion in a anisotropic medium,

om 0 ou .
Gt_@X,-<DiaX,->’ i=1,3. ()

Please note that repeated indices imply summation in Eq. (5).
2.1. Special case

Consider a laminate with intralaminar cracks oriented perpendicular to the X axis, subjected to an in-
plane uniaxial loading in the X; direction under isothermal conditions as schematically shown in Fig. 1. For
the special case of uniaxial loading, the states of stress and damage reduce to

Oy =033 =013 =003 =01p =0,

d22 = d33 = d13 = d23 = d12 =0.

Based on a definition of the damage originally proposed by Talreja (1994), it can be shown that the non-
zero damage component d;; is given by

K(m, T)l‘gél

di =
11 ¢

()

In Eq. (6), k(m,T) is an experimentally determined influence parameter that incorporates the constraining
influence of moisture concentration (m), temperature (7)), ply orientation, and fiber architecture on crack
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Fig. 1. Schematic of a micro-cracked laminate under uniaxial stress state.

opening displacement; ¢, is the crack size, ¢ is the total thickness of the laminate, and ¢, is the crack density
in the X|-direction as depicted in Fig. 1.

Using the irreducible integrity bases from Eq. (1) and assuming that terms beyond second-order in
uniaxial stress and damage can be neglected, the Gibbs potential becomes

PP = Co+ G611 + Codyy + 635%1 + Cyondy + C‘5d121 + 666%]‘111 + 67511d12]- (7)

In Eq. (7), the C; are thermodynamic coefficients that could be expressed, in general, as functions of
temperature (7) and concentration (). In this manner, concentration and temperature are implicitly in-
cluded in the polynomial expansion of Gibbs potential as state variables.

The chemical potential of moisture in the polymer for this special case is
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Because chemical potential is, in general, a function of oy, d;, T, and m, therefore,
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For the special case of uniform stress, damage, and temperature distributions, only the moisture gradient
term is dominant and Eq. (4) can be written as
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For the special stress-free case, where 6;; = 0, Eq. (9) becomes
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If, for conceptual simplification, it is assumed that swelling due to moisture absorption influences only the
opening displacement without significantly affecting either the crack size, ¢, or the crack density, J;, then,

0 Ktcél _fgél Ok
%( t )_ t om’ (1)

Taking the definitions of damage and its derivative given, respectively, by Egs. (6) and (11) and substituting
into Eq. (10) results in the final expression for moisture flux,
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where, each orthotropic component of effective diffusivity (D;) can be obtained as a quadratic function of
the crack density given by
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Substituting Eq. (12) into Eq. (5) yields the governing equation for moisture diffusion in an orthotropic
laminate subjected to zero stress and uniform intralaminar damage,
om 0
o ax

(oo e 2. (16)
As defined in Egs. (13)—(15), the damage coefficients Cy, C;, C,, depend on polymer density, polymer
diffusivity, moisture concentration, temperature, and the ratio tg /t. These coefficients can be characterized
from absorption experiments on pre-cracked laminate specimens as discussed in the “Model verification™
Section 4.

For modeling absorption and/or desorption in a laminate in the through-thickness, i.e., in the X3 di-
rection, Eq. (16) reduces to

a_m 0
ot aX3

om
2
(Co + C1) + G20 )% (17)

3. Finite element formulation
In order to extend the simple one-dimensional analytical model in Eq. (17) to more complex shapes and

boundary conditions, a three-dimensional finite element code (NOVA-3D) was developed. The variational
(weak) form of Eq. (16) in three dimensions is given by,
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where, u is an admissible variational test function. Based on the variational statement, the diffusion
boundary conditions can now be identified as,

om' .
(Dt 6?1(-)”[ +¢=0 on A(f) (specified solvent flux),

m=m on A(;> (specified concentration),

where 4\ + 4% = 4© and n; are the components of the unit outward normal at the boundary. Thus,
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A standard finite element interpolation of the concentration field over each element is given by

m(Xi, 1) = N;(X;) my(0), (20)

j=1

where, m; are the nodal concentrations, N; are the interpolation functions and N is the number of nodes per
element. Substituting Eq. (20) into Eq. (19) and employing matrix notation, Eq. (19) becomes

|7 {in} + |K [{m} = {F}, (21)

where, the superscript (e) is used to denote that the equations are satisfied over each element and
Ty = /V(c) (N;Ne)dV,
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The time derivative {7} is approximated using a standard theta family of approximations, yielding at time
1y and tn+la

149 [{m},y + (B [{m}, = {P},, (22)

where

[4'9) = |T] + 0A1,.1 | K],
[B9] = [T9] + (1 = 0)At,.1 [K©],

{P} = At |0{F© o (1= 0){F} |.

Eq. (22) is solved using a value of 6 =0.5, which corresponds to the Crank—Nicholson scheme and is un-
conditionally stable. Note that for n = 1, the value of the starting concentration in Eq. (22) is known from
the initial conditions.



122 S. Roy, W. Xu | International Journal of Solids and Structures 38 (2001) 115-125

L] TEST DATH
i QULDRATIC EiT

DIFFUSIVITY { x 10" em’a )
=
]

inf

1] [ T
CAACK DENSITY [crscha/phycm)

Fig. 2. Change in diffusivity with micro-crack density.

4. Model verifications

In order to characterize the model coefficients and perform preliminary model verifications, moisture-
weight-gain data for graphite/epoxy S-harness satin [0/90/0/90]; laminate with different micro-crack den-
sities were obtained from hygrothermal tests performed elsewhere. ! Specifically, test specimens were
mechanically pre-cracked by uniaxial fatigue as well as static loading and then exposed to 75% relative
humidity at 40°C. The crack densities reported for the specimens were 6.142 cracks per ply per cm for the
static load case and 11.142 cracks per ply per cm for the fatigue load case, respectively. An un-cracked
specimen was also included in the test matrix as the control specimen. The specimens were not subjected to
any applied mechanical stress during absorption. The effective diffusivity for each test specimen was ex-
tracted from weight gain data using standard analytical procedure (Shen and Springer, 1981).

A quadratic least-squares curve-fit to the diffusivity data is shown by the solid line in Fig. 2. The values
of the damage coeflicients defined in Eq. (12) were obtained using this procedure for this case and are given
as Cy = 3.184 x 107 cm?/s, C; = —1.036 x 1071 cm’/s, and C, = 1.184 x 107! cm*/s. The corresponding
equation for through-thickness diffusivity as a function of crack density is given by

Dy =3.184 x 107% — 1.036 x 10715, + 1.184 x 10715 cm?/s. (23)

It should be noted that although the linear damage coefficient C, has a negative value, the over-all value of
the diffusivity is, for all practical purposes, a monotonically increasing function of crack density as evi-
denced in Fig. 2.

Moisture-weight-gain curves predicted by the model using the quadratic diffusivity-damage relation
given by Eq. (23) combined with the diffusion governing Eq. (17), and its comparison with test data are
shown in Figs. 3-5. The results shown in Fig. 3 correspond to an undamaged specimen. The moisture data
shown in Fig. 4 correspond to a micro-crack density of 6.142 cracks per ply per cm, and those in Fig. 5
correspond to a micro-crack density of 11.142 cracks per ply per cm. A reasonable agreement between

! Private communications, Pratt and Whitney aircraft, West Palm Beach, FL.
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Fig. 4. Predicted vs. measured weight-gain for d; = 6.142 cracks per ply per cm.

model predictions and test data is observed for all three cases for the duration of the tests. Although these
results do not conclusively prove that laminate diffusivity is a quadratic function of crack density, it does
confirm that retaining only up to the quadratic terms in damage in the expansion of the Gibbs potential is
an acceptable modeling approximation for the material system under consideration. As anticipated, the
moisture uptake curves predicted by the finite element model for the simple one-dimensional case agree
exactly with the analytical model predictions and are not separately presented in Figs. 3-5.
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Fig. 5. Predicted vs. measured weight-gain for ¢; = 11.142 cracks per ply per cm.

5. Discussion and conclusions

A modeling methodology based on irreversible thermodynamics developed within the framework of
composite macro-mechanics was presented to allow characterization of non-Fickian diffusion coefficients
from moisture-weight-gain data for laminated composites with damage. A symmetric damage tensor based
on continuum damage mechanics was incorporated in this model by invoking the principle of invariance
with respect to coordinate transformations. To maintain tractability, the diffusion—governing equations
were simplified for the special case of a laminate with uniform matrix cracks that is subjected to a uniaxial
tensile stress state. A finite element procedure that extends this methodology to more complex shapes and
boundary conditions was also presented. Because of the macro-mechanics formulation employed in de-
veloping this model, the model is currently restricted to the study of overall laminate absorption/desorption
characteristics in the presence of non-evolving damage states. An alternative approach that considers the
more detailed physical aspects of moisture ingress into a micro-cracked laminate can be found in Roy and
Bandorawalla (1999).

The material coefficients needed to model the effect of matrix micro-cracking on laminate diffusivity were
evaluated by using hygrothermal test data for a [0/90/0/90] graphite/epoxy S-harness satin textile com-
posite. The moisture-weight-gain curves predicted by using a quadratic diffusivity-damage relation yielded
good correlation with test data. Although these observations do not conclusively prove that the laminate
diffusivity is indeed a quadratic function of crack density, it does indicate that retaining only up to the
quadratic terms in damage in the expansion of the Gibbs potential is an acceptable modeling approxi-
mation for the material system under consideration. The primary purpose of this article is to establish a
theoretical framework for using the proposed modeling approach to characterize and eventually, to predict
absorption and desorption in micro-cracked laminates. The formulation presented in this article is deemed
to provide a small, yet positive step towards that goal. Additional hygrothermal tests on specimens sub-
jected to combined stress and damage states at different temperature and humidity levels are currently
underway to comprehensively evaluate the accuracy of the proposed model when these data become
available.
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